
Scattering Models for Reverberation Problems 
 
Issues to be addressed 
 
Relatively standard roughness spectra will be used for the surface and bottom. These are 
2-D spectra appropriate for 3-D reverberation problems. For the 2-D reverberation 
problems corresponding 1-D spectra are needed, and models for those will be specified. 
 
For both the surface and bottom and for both 2-D and 1-D surfaces, bistatic scattering 
models are needed, and these include monostatic backscattering as a special case. Most 
likely these will be used only for bistatic backscattering, and even when 2-D roughness is 
being treated, only in-plane bistatic backscattering will likely be utilized in reverberation 
modeling. However, models for more general bistatic scattering will be given. 
 
In addition to bistatic scattering models, coherent reflection loss models for both the 
surface and bottom are needed for both 2-D and 1-D surfaces. 
 
For bistatic backscattering, low grazing angle scattering will be dominant for the 
reverberation except at very short times. Because of this, the use of perturbation theory 
for modeling the bistatic backscattering processes will be assumed. At our highest 
frequency of 3.5 kHz, perturbation would not be accurate over the entire range of incident 
and scattering angles, especially for forward scattering at higher grazing angles. But, at 
the low grazing angles of primary interest, perturbation theory should be adequate for 
bistatic backscatter modeling up to 3.5 kHz for sensible ranges. Perturbation theory is 
also very convenient in that relatively simple analytic expressions can be given for the 
needed models. It may turn out that at very short times where higher grazing angles come 
into play, the limitations of perturbation will become significant. This is one area where 
comparisons with full numerical solutions (not employing perturbation theory) would be 
especially useful. And, this is the regime where numerical solutions are most readily 
carried out. 
 
It is less clear that perturbation theory would be adequate for coherent reflection loss 
models up to 3.5 kHz. This is so because perturbation typically fails first near the forward 
direction as the roughness or frequency is increased, and the reflection loss is obtained by 
integrating the scattered energy over all outgoing directions, which is dominated by the 
forward region. Because of this, coherent reflection loss models will be based on the 
more accurate small slope approximation (SSA). The SSA is more complicated to 
employ, but is worth the trouble for the coherent reflection loss. Fortunately, it is 
believed that SSA models for bistatic backscattering can be avoided for the problems of 
interest. 
 
Surface bistatic scattering for 2-D surfaces 
 
For a 2-D rough surface (for the 3-D reverberation problem), we write the bistatic 
scattering strength as 
 



    SS =10 log10 σ 2D ,        (1) 
 
where σ 2D is the bistatic scattering cross section per unit area per unit solid angle and is 
dimensionless. 
 
The (lowest-order) perturbation theory expression for the bistatic scattering cross section 
is given by 
 

    σ 2D = 4kiz
2ksz

2 P2D(Ki − Ks ) = 4k 4 sin2 θi sin2 θsP2D(Ki − Ks ) .      (2) 
 
In this expression, k is the acoustic wavenumber in the water, and we write the acoustic 
wave vector as 
 

  k = K + kz
ˆ z  ,            (3) 

 
where K denotes the horizontal component of the wave vector. The angles in (2) are the 
incident and scattered grazing angles. Finally, P2D(K) is the 2-D surface roughness 
spectrum, normalized such that the mean square surface height h2 is given by 
 
h2 = P2D(K)d∫ 2

K .     (4) 
 
We take P2D(K) to be given by an isotropic Pierson-Moskowitz spectrum for a fully 
developed sea. Thus, 
 

P2D(K) =
α

4πK 4 exp(−KL
2 /K 2) ,   (5) 

 
where K = | K | , KL = β g /U 2, g = 9.81 m/s2, α = 0.0081, and β = 0.74.  
 
In the original Pierson-Moskowitz formulation, U is the wind speed at a height of 19.5 m, 
not the present standard of 10 m. This refinement will be ignored, and the wind speed of 
10 m/s will be used directly in these expressions. 
 
Using (4) and (5) one finds that the rms surface height h is given by 
 

h =
1
2

α
β

U 2

g
 .    (6) 

 
For U = 10 m/s, this gives h = 0.53 m, and then the significant wave height H, 
approximately given by H ≅ 4h, is 2.13 m. 
 
When the argument of P2D(K) is Ki − Ks  as in (2), then K 2 in (5) is replaced by 
 
k 2[(cosθi − cosθs cosφ)2 + cos2 θs sin2 φ] 



 
where φ  is the asimuthal angle between Ki  and Ks . Thus, for specular scattering, φ = 0, 
and for in-plane bistatic backscattering, φ = π . Therefore, for in-plane bistatic 
backscattering, K 2 in (5) is replaced by k 2(cosθi + cosθs)

2 and for monostatic 
backscattering by 4k 2 cos2 θi . 
 
Surface bistatic scattering for 1-D surfaces 
 
The first step is to obtain a 1-D roughness spectrum. There is not a unique prescription 
for obtaining a 1-D spectrum from a 2-D spectrum in order to yield reverberation that 
most closely matches that found with the initial 2-D spectrum. The choice taken here is to 
define the 1-D spectrum (for positive and negative Kx ) as 
 

P1D(Kx ) = P2D(Kx ,Ky )dKy
−∞

∞

∫ .        (7) 

 
Surface realizations obtained using P1D(Kx )  are equivalent to 1-D cuts made through 2-D 
surface realizations obtained using P2D(K). 
 
For the case of the Pierson-Moskowitz spectrum the integral in (7) does not reduce to a 
convenient analytic form. While (7) could be evaluated numerically, we will instead use 
an approximation to the Pierson-Moskowitz spectrum that will yield an analytic form for 
the 1-D spectrum. 
 
We approximate (5) by 
 

P2D(K) =
α

4π k 4 , K > KL

P2D(K) = 0, K < KL .
            (8) 

 
Using (4) one finds the same rms height as for the original Pierson-Moskowitz spectrum. 
Then using (8) in (7) yields the following 1-D roughness spectrum: 
 

  

P1D(Kx ) =
α

8 |Kx |3
for |Kx | > KL ,

P1D(Kx ) =
α

8 |Kx |3
F(Kx ) for |Kx | < KL ,

  (9) 

 
where 
 

F(Kx ) =
2
π

[arcsin(|Kx | /KL )− |Kx | KL
2 − Kx

2 /KL
2].     (10) 

 
For Kx → 0 it is necessary to expand (10) yielding 



 

F(Kx ) =
2
π

|Kx |3

KL
3

2
3

+
1
5

Kx
2

KL
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟           (11) 

 
for use in (9). 
 
The 1-D roughness spectrum given by (9)-(11) has been used recently to study the 
accuracy of the SSA result for the coherent surface reflection coefficient [JASA 116, 
1975-1984 (2004)]. 
 
For a 1-D rough surface (the 2-D reverberation problem), the surface scattering strength 
is given by 
 
 
SS =10log10 σ1D ,        (12) 
 
where σ1D is the bistatic scattering cross section per unit surface length per unit scattering 
angle and is dimensionless. 
 
The perturbation theory expression for the bistatic and monostatic scattering cross section 
is given by 
 

σ1D =
4kiz

2ksz
2

k
P1D(kix − ksx ) = 4k 3 sin2 θi sin2 θsP1D(kix − ksx ) ,      (13) 

 
where for bistatic backscattering 
 
kix − ksx = k(cosθi + cosθs).                        (14) 
 
Surface coherent reflection loss for 1-D surfaces 
 
The surface coherent reflection loss in dB is given by 
 
RL = −20log10(|RA |) ,              (15) 
 
where RA is the amplitude coherent surface reflection coefficient, and in general is 
complex. The small slope approximation yields a series of expressions for RA, and greater 
accuracy is obtained by going beyond the lowest-order expression. (See JASA 116, 1975-
1984 (2004) for more discussion and additional references.) We will denote the lowest-
order approximation scheme by SSA(1) and the next order by SSA(2). When using 
SSA(1), scattering results reduce correctly to lowest-order perturbation theory in the 
small roughness regime, and when using SSA(2), the reduction is correct to second-order 
in perturbation theory. In the perturbation theory result for the coherent reflection 
coefficient, the first correction to the flat surface reflection coefficient comes in at 
second-order in surface height, which is an important reason to consider going beyond 



SSA(1) to obtain RA. In contrast to perturbation theory, SSA expressions for RA are not 
restricted to the small roughness regime. 
 
The SSA(1) result for RA is the same as the familiar Kirchhoff approximation expression 
and is given by 
 
 SSA(1) : RA = −exp(−2k 2h2 sin2 θi).      (16) 
 
The SSA(2) result for RA is given by 
 

 
SSA(2) : RA = −exp(−2k 2h2 sin2 θi)[−1− 2k 2h2 sin2 θi

+ 2k sinθi dk1P1D(k cosθi − k1) k 2− k1
2 ]

−∞

∞

∫ .
    (17) 

 
Comparisons with rough surface PE simulations for 1-way propagation at 3.2 kHz and 
with a wind speed of 10 m/s show (17) to be superior to (16) [JASA 116, 1975-1984 
(2004)]. Using (16) in GRAB led to a propagated intensity that is high by just less then 1 
dB at a range of 20 km, while with (17) the error was found to be negligible. 
 
Files of RA versus grazing angle from 0° to 90° for a wind speed of 10 m/s and for 
frequencies of 250, 1000, and 3500 Hz will be provided by Kevin Williams at APL-UW.  
 
Surface coherent reflection loss for 2-D surfaces 
 
For 2-D surfaces, the surface coherent reflection loss in terms of RA is again given by 
(15). The SSA(1) result for RA is also still given by (16). The SSA(2) result for RA is 
given by 
 
SSA(2) : RA = −exp(−2k 2h2 sin2 θi)[−1− 2k 2h2 sin2 θi

+ 2k sinθi d2K1P2D(Ki − K1 ) k 2− |K1|
2∫ ].

   (18) 

 
Results using (18) are not presently available, and at this time we recommend use of (16) 
for 2-D surfaces. Results using (18) may become available later this year.  
 
Bottom bistatic scattering for 2-D surfaces 
 
For scattering from 2-D bottom roughness, we write the bistatic scattering strength as 
 
    SS =10 log10 σ 2D ,        (19) 
 
where σ 2D is the bistatic scattering cross section per unit area per unit solid angle and is 
dimensionless. 
 



The (lowest-order) perturbation theory expression for the bistatic scattering cross section 
is given by [see JASA 96, 1748-1754 (1994); JASA 103, 275-287 (1998)]  
 

σ 2D =
k1

4

4
{| a(Ks,Ki )[1+ Γ(Ks)][1+ Γ(Ki )]

+ b(Ks,Ki )[1− Γ(Ks)][1− Γ(Ki )] |2}P2D(Ki − Ks).
      (20) 

 
In this expression, k1 = 2π /λ1is the (real) acoustic wavenumber in the water, the 
wavelength in the water is λ1 = c1 / f  where c  is the water sound speed and 1 f is the 
frequency. 
 
 As before we write the acoustic wave vector as 
 

  k = K + kz
ˆ z  ,            (21) 

 
where K denotes the horizontal component of the wave vector. Also in (20) Γ(K)is the 
flat bottom amplitude reflection coefficient for a plane wave with horizontal wave vector 
component K and is given by 
 

Γ(K) =
ρβ1(K) −κβ2(K)
ρβ1(K) + κβ2(K)

 ,    (22) 

 
where ρ = ρ2 /ρ1 and κ = k2 /k1 with ρ2 and ρ1 the sediment and water density, 
respectively, and k2 the (complex) wavenumber in the sediment. In (22)  
 
β1(K) = 1− |K |2/k1

2    (23) 
 
and 
 
β2(K) = 1− |K |2/k2

2 .  (24) 
 
The square root in (23) is chosen so that β1 is either positive or positive imaginary. The 
square root in (24) is chosen so that β2 is in the first quadrant of the complex plane. For a 
plane wave in the water propagating at grazing angle θ, the z component of the wave 
vector is given by 
 
k1z = k1β1(K) = k1 sinθ     (25) 
 
and the magnitude of the horizontal component is 
 
| K | = K = k1 cosθ       (26). 
 



Thus, the magnitudes of the horizontal wave vectors appearing in (20) readily follow 
from the incident and scattered grazing angles θi, θs. 
 
We write the complex wavenumber in the sediment as 
 
k2 = k2r + ik2i = k2r(1+ iδ)   (27) 
 
so that δ = k2i /k2r  and k2r = 2π /λ2 with λ2 = c2 / f . Here, λ2 is the wavelength in the 
sediment, c2  is the sound speed in the sediment, and f  is the frequency. The attenuation 
in dB for propagation in the sediment to range r is 
 
atten(dB) = −20log10[exp(−k2ir)] = 20 k2i r log10 e = 20δ k2r r log10 e .    (28) 
 
The attenuation per wavelength in the sediment is then 
 
atten(dB/λ2) = 40π δ log10 e .   (29) 
 
An attenuation of 0.5 dB/λ2 then implies  
 

δ =
1

80π log10 e
= 0.009162.   (30) 

 
Next, in (20) 
 

a(Ks,Ki ) = ( 1
ρ

−1) Ks⋅ Ki

k1
2 +1−

κ 2

ρ
= ( 1

ρ
−1)cosθi cosθs cosφ +1−

κ 2

ρ
   (31) 

 
with φ  the azimuthal bistatic angle and 
 
b(Ks,Ki ) = β1(Ks )β1(Ki )(ρ −1) = sinθs sinθi(ρ −1) .   (32) 
 
Finally in (20), P2D(K) is the 2-D bottom roughness spectrum, normalized such that the 
mean square roughness height h2 is given by 
 
h2 = P2D(K)d∫ 2

K .     (33) 
 
The form to be used for P2D(K) is given by 
 

P2D(K) =
h2l2

2π (1+ K 2l2)3 / 2 =
h2KL

2π (KL
2 + K 2)3 / 2      (34) 

 
where KL ≡1/ l . It is easy to show that (33) and (34) are consistent. Two sets of bottom 
roughness parameters will be used: one set for a “rough bottom” and one set for a 



“typical sand bottom.” For the rough bottom case, we take KL = 0.1m, implying l =10m, 
and we take h = 2 (0.1m) = 0.141m. In the power law region where K >> KL  (34) 
reduces to 
 

P2D(K) =
h2KL

2π K 3         (35) 

 
and for this case the “spectral strength” is h2KL /(2π ) = 3.18 ×10−4 m. While the rms 
height would appear modest, the spectral strength here is relatively high at wavelength 
scales in comparison to typical sandy bottoms. This will lead to substantial scattering 
from the bottom. 
 
The second set of bottom roughness parameters have been chosen to represent a “typical 
sand bottom” condition where the spectral level is reduced by a factor of 8 and the 
parameter l in (34) is increased from 10 m to 400 m. This will produce bottom roughness 
conditions much closer to those typically found for sandy bottoms. These changes lead to 
an increase in the mean square height by a factor of 5 or an increase in the rms height h 
by the square root of 5 so that h becomes 0.316 m. In this second roughness condition the 
rms height has increased, but this increase occurs at large spatial scales, leading to a 
smoother interface with large-scale undulations. 
 
To summarize, we now have two bottom conditions: 
 
Rough bottom: P2D(K) given by (34) with h = 0.141 m and KL = 0.1 m-1. 
 
Typical sand bottom: P2D(K) given by (34) with h = 0.316 m and KL = 2.5×10-3 m-1. 
 
These two bottom conditions will lead to quite different propagation conditions in a 
waveguide. 
 
When the argument of P2D(K) is Ki − Ks  as in (20), then K 2 in (34) is replaced by 
 
k 2[(cosθi − cosθs cosφ)2 + cos2 θs sin2 φ] 
 
where φ  is the asimuthal angle between Ki  and Ks . Thus, for specular scattering, φ = 0, 
and for in-plane bistatic backscattering, φ = π . Therefore, for in-plane bistatic 
backscattering, K 2 in (34) is replaced by k 2(cosθi + cosθs)

2 and for monostatic 
backscattering by 4k 2 cos2 θi . 
 
Bottom bistatic scattering for 1-D surfaces 
 
The first step is to obtain a 1-D roughness spectrum. In this case the prescription given by 
(7) is readily carried out yielding 
 



P1D(Kx ) =
h2KL

π (KL
2 + Kx

2)
.      (36) 

 
Again, we have two bottom conditions: 
 
Rough bottom: P1D(Kx )  given by (36) with h = 0.141 m and KL = 0.1 m-1. 
 
Typical sand bottom: P1D(Kx )  given by (36) with h = 0.316 m and KL = 2.5×10-3 m-1. 
 
For a 1-D rough surface (the 2-D reverberation problem), the bottom scattering strength 
is given by 
 
SS =10log10 σ1D ,        (37) 
 
where σ1D is the bistatic scattering cross section per unit surface length per unit scattering 
angle and is dimensionless. The perturbation theory expression for the bistatic scattering 
cross section is given by 
 

σ1D =
k1

3

4
{| a(ksx ,kix )[1+ Γ(ksx )][1+ Γ(kix )]

+ b(ksx ,kix )[1− Γ(ksx )][1− Γ(kix )] |2}P1D(kix − ksx ),
    (38) 

 
where 
 

a(ksx ,kix ) = −( 1
ρ

−1)cosθi cosθs +1−
κ 2

ρ
      (39) 

 
and 
 
b(ksx ,kix ) = sinθs sinθi(ρ −1).    (40) 
 
The reflection coefficients in (38) are given by (22). For bistatic backscattering 
 
kix − ksx = k(cosθi + cosθs).       (39) 
 
Bottom coherent reflection loss for 1-D surfaces 
 
The bottom coherent reflection loss in dB is given by 
 
RL = −20log10(|RA |) ,              (42) 
 
where RA is the amplitude coherent bottom reflection coefficient, and is complex. As with 
the surface case, the small slope approximation yields a series of expressions for RA, and 
greater accuracy is obtained by going beyond the lowest-order expression. We will 



denote the lowest-order approximation scheme by SSA(1) and the next order by SSA(2). 
When using SSA(1), scattering results reduce correctly to lowest-order perturbation 
theory in the small roughness regime, and when using SSA(2), the reduction is correct to 
second-order in perturbation theory. 
 
The SSA(1) result for RA is the same as the Kirchhoff approximation expression and is 
given by 
 
 SSA(1) : RA = Γ(kix )exp(−2k 2h2 sin2 θi) .      (43) 
 
The SSA(2) result for RA is similar in form to the surface result given by (17), except the 
factor multiplying the roughness spectral density function inside the integral is much 
more complicated and will not be given here. 
 
Comparisons with rough bottom PE simulations for 1-way propagation at 3 kHz show 
that the SSA(1) result given by (43) is perfectly adequate for the bottom coherent 
reflection loss for the “typical sand bottom” case. However, when the bottom roughness 
is increased to be comparable to the “rough bottom” case, the SSA(2) result would be 
preferred. 
 
Files of SSA(2) results for RA versus grazing angle from 0° to 90° for the rough bottom 
case for frequencies of 250, 1000, and 3500 Hz will be provided by Kevin Williams at 
APL-UW.  
 
Note: While the bottom coherent reflection coefficient is correctly given by (43) for the 
“typical sand bottom” case, one-way propagation simulations by APL-UW indicate that 
the use of this reflection coefficient may be inappropriate for reverberation modeling for 
the typical sand bottom case. For this case, the scattered incoherent energy remains 
closely confined about reflected rays. Thus, the incoherent energy is not removed from 
the waveguide significantly more than reflected rays and can therefore continue to 
contribute to reverberation. In other words, the flat bottom reflection coefficient may be 
more appropriate for reverberation modeling than (43) for the typical sand bottom case. 
This remark does not apply to the rough bottom case.  
  
Bottom coherent reflection loss for 2-D surfaces 
 
For 2-D surfaces, the bottom coherent reflection loss in terms of RA is again given by 
(42). The SSA(1) result for RA is also still given by (43). 
 
Results using the SSA(2) result for RA are not presently available, and at this time we 
recommend use of (43) to obtain the bottom coherent reflection loss for 2-D surfaces for 
both models of bottom roughness. Results using SSA(2) may become available later this 
year.  
 
Note: While the bottom coherent reflection coefficient is correctly given by (43) for the 
“typical sand bottom” case, one-way propagation simulations by APL-UW indicate that 



the use of this reflection coefficient may be inappropriate for reverberation modeling for 
the typical sand bottom case. For this case, the scattered incoherent energy remains 
closely confined about reflected rays. Thus, the incoherent energy is not removed from 
the waveguide significantly more than reflected rays and can therefore continue to 
contribute to reverberation. In other words, the flat bottom reflection coefficient may be 
more appropriate for reverberation modeling than (43) for the typical sand bottom case. 
This remark does not apply to the rough bottom case.  
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